Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Brain Res ; 1836: 148911, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604558

RESUMO

Cervical spinal cord injury (SCI) causes dramatic sensorimotor deficits that restrict both activity and participation. Restoring activity and participation requires extensive upper limb rehabilitation focusing elbow and wrist movements, which can include motor imagery. Yet, it remains unclear whether MI ability is impaired or spared after SCI. We investigated implicit and explicit MI ability in individuals with C6 or C7 SCI (SCIC6 and SCIC7 groups), as well as in age- and gender-matched controls without SCI. Inspired by previous studies, implicit MI evaluations involved hand laterality judgments, hand orientation judgments (HOJT) and hand-object interaction judgments. Explicit MI evaluations involved mental chronometry assessments of physically possible or impossible movements due to the paralysis of upper limb muscles in both groups of participants with SCI. HOJT was the paradigm in which implicit MI ability profiles differed the most between groups, particularly in the SCIC6 group who had impaired elbow movements in the horizontal plane. MI ability profiles were similar between groups for explicit MI evaluations, but reflected task familiarity with higher durations in the case of unfamiliar movements in controls or attempt to perform movements which were no longer possible in persons with SCI. Present results, obtained from a homogeneous population of individuals with SCI, suggest that people with long-term SCI rely on embodied cognitive motor strategies, similar to controls. Differences found in behavioral response pattern during implicit MI mirrored the actual motor deficit, particularly during tasks that involved internal representations of affected body parts.

2.
J Sports Sci ; 42(5): 392-403, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38574326

RESUMO

When applied over the primary motor cortex (M1), anodal transcranial direct current stimulation (a-tDCS) could enhance the effects of a single motor imagery training (MIt) session on the learning of a sequential finger-tapping task (SFTT). This study aimed to investigate the effect of a-tDCS on the learning of an SFTT during multiple MIt sessions. Two groups of 16 healthy young adults participated in three consecutive MIt sessions over 3 days, followed by a retention test 1 week later. They received active or sham a-tDCS during a MIt session in which they mentally rehearsed an eight-item complex finger sequence with their left hand. Before and after each session, and during the retention test, they physically repeated the sequence as quickly and accurately as possible. Both groups (i) improved their performance during the first two sessions, showing online learning; (ii) stabilised the level they reached during all training sessions, reflecting offline consolidation; and (iii) maintained their performance level one week later, showing retention. However, no significant difference was found between the groups, regardless of the MSL stage. These results emphasise the importance of performing several MIt sessions to maximise performance gains, but they do not support the additional effects of a-tDCS.


Assuntos
Dedos , Aprendizagem , Córtex Motor , Estimulação Transcraniana por Corrente Contínua , Humanos , Adulto Jovem , Masculino , Córtex Motor/fisiologia , Feminino , Aprendizagem/fisiologia , Dedos/fisiologia , Adulto , Destreza Motora/fisiologia , Imaginação/fisiologia , Desempenho Psicomotor/fisiologia
3.
Anat Sci Educ ; 17(3): 660-673, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38197466

RESUMO

Human anatomy requires understanding spatial relationships among anatomical structures and is often perceived as difficult to learn by students. To overcome this concern, several digital tools exist with some strengths and limitations among which the lack of interactivity especially for complex functional anatomy learning. In this way, a new interactive three-dimensional tool called Antepulsio was designed. Antepulsio was assessed by comparing three groups of first year kinesiology students to test whether it is likely to favor functional anatomy learning during three training sessions spread over a week. The experiment was conducted during a real academic course. Laterality judgment, 3D spatial abilities and working memory abilities from all participants were previously collected to create three homogeneous groups: the active group (n = 17, 17.76 ± 0.56 years) interacted with Antepulsio, the passive group (n = 18, 17.89 ± 0.83 years) watched videos of Antepulsio while the control group (n = 15, 18.07 ± 0.80 years) performed a neutral activity unrelated to anatomy. Anatomy knowledge was also assessed during pretest, posttest, and retention test (8 weeks after the posttest). The most significant outcome of this study revealed that in case of better working visual memory, the active group outperformed the passive group between pretest and retention test (p < 0.01). In other words, Antepulsio tool is efficient only for students with high visuospatial working memory. These selective benefits of Antepulsio are discussed in terms of cognitive load, training duration and the necessary period of familiarization with the tool.


Assuntos
Anatomia , Estudantes de Medicina , Humanos , Anatomia/educação , Aprendizagem , Currículo , Estudantes , Avaliação Educacional , Imageamento Tridimensional , Estudantes de Medicina/psicologia
4.
Aging (Albany NY) ; 15(19): 9894-9895, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37837469
5.
Brain Sci ; 13(1)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36672095

RESUMO

Prism adaptation (PA) is a useful method to investigate short-term sensorimotor plasticity. Following active exposure to prisms, individuals show consistent after-effects, probing that they have adapted to the perturbation. Whether after-effects are transferable to another task or remain specific to the task performed under exposure, represents a crucial interest to understand the adaptive processes at work. Motor imagery (MI, i.e., the mental representation of an action without any concomitant execution) offers an original opportunity to investigate the role of cognitive aspects of motor command preparation disregarding actual sensory and motor information related to its execution. The aim of the study was to test whether prism adaptation through MI led to transferable after-effects. Forty-four healthy volunteers were exposed to a rightward prismatic deviation while performing actual (Active group) versus imagined (MI group) pointing movements, or while being inactive (inactive group). Upon prisms removal, in the MI group, only participants with the highest MI abilities (MI+ group) showed consistent after-effects on pointing and, crucially, a significant transfer to throwing. This was not observed in participants with lower MI abilities and in the inactive group. However, a direct comparison of pointing after-effects and transfer to throwing between MI+ and the control inactive group did not show any significant difference. Although this interpretation requires caution, these findings suggest that exposure to intersensory conflict might be responsible for sensory realignment during prism adaptation which could be transferred to another task. This study paves the way for further investigations into MI's potential to develop robust sensorimotor adaptation.

6.
Front Aging Neurosci ; 14: 1060791, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570544

RESUMO

Background: Motor imagery practice (MIP) and anodal transcranial direct current stimulation (a-tDCS) are innovative methods with independent positive influence on motor sequence learning (MSL) in older adults. Objective: The present study investigated the effect of MIP combined with a-tDCS over the primary motor cortex (M1) on the learning of a finger tapping sequence of the non-dominant hand in healthy older adults. Methods: Thirty participants participated in this double-blind sham-controlled study. They performed three MIP sessions, one session per day over three consecutive days and a retention test 1 week after the last training session. During training / MIP, participants had to mentally rehearse an 8-element finger tapping sequence with their left hand, concomitantly to either real (a-tDCS group) or sham stimulation (sham-tDCS group). Before and after MIP, as well as during the retention test, participants had to physically perform the same sequence as fast and accurately as possible. Results: Our main results showed that both groups (i) improved their performance during the first two training sessions, reflecting acquisition/on-line performance gains, (ii) stabilized their performance from one training day to another, reflecting off-line consolidation; as well as after 7 days without practice, reflecting retention, (iii) for all stages of MSL, there was no significant difference between the sham-tDCS and a-tDCS groups. Conclusion: This study highlights the usefulness of MIP in motor sequence learning for older adults. However, 1.5 mA a-tDCS did not enhance the beneficial effects of MIP, which adds to the inconsistency of results found in tDCS studies. Future work is needed to further explore the best conditions of use of tDCS to improve motor sequence learning with MIP.

7.
Front Psychol ; 13: 909565, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237677

RESUMO

Prism Adaptation (PA) is a useful method to study the mechanisms of sensorimotor adaptation. After-effects following adaptation to the prismatic deviation constitute the probe that adaptive mechanisms occurred, and current evidence suggests an involvement of the cerebellum at this level. Whether after-effects are transferable to another task is of great interest both for understanding the nature of sensorimotor transformations and for clinical purposes. However, the processes of transfer and their underlying neural substrates remain poorly understood. Transfer from throwing to pointing is known to occur only in individuals who had previously reached a good level of expertise in throwing (e.g., dart players), not in novices. The aim of this study was to ascertain whether anodal stimulation of the cerebellum could boost after-effects transfer from throwing to pointing in novice participants. Healthy participants received anodal or sham transcranial direction current stimulation (tDCS) of the right cerebellum during a PA procedure involving a throwing task and were tested for transfer on a pointing task. Terminal errors and kinematic parameters were in the dependent variables for statistical analyses. Results showed that active stimulation had no significant beneficial effects on error reduction or throwing after-effects. Moreover, the overall magnitude of transfer to pointing did not change. Interestingly, we found a significant effect of the stimulation on the longitudinal evolution of pointing errors and on pointing kinematic parameters during transfer assessment. These results provide new insights on the implication of the cerebellum in transfer and on the possibility to use anodal tDCS to enhance cerebellar contribution during PA in further investigations. From a network approach, we suggest that cerebellum is part of a more complex circuitry responsible for the development of transfer which is likely embracing the primary motor cortex due to its role in motor memories consolidation. This paves the way for further work entailing multiple-sites stimulation to explore the role of M1-cerebellum dynamic interplay in transfer.

9.
Sci Rep ; 11(1): 13788, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215827

RESUMO

Motor imagery (MI) is usually facilitated when performed in a congruent body position to the imagined movement, as well as after actual execution (AE). A lower-limb amputation (LLA) results in important structural and functional changes in the sensorimotor system, which can alter MI. In this study, we investigated the effects of body position and AE on the temporal characteristics of MI in people with LLA. Ten participants with LLA (mean age = 59.6 ± 13.9 years, four females) and ten gender- and age-matched healthy control participants (mean age = 60.1 ± 15.4 years, four females) were included. They performed two locomotor-related tasks (a walking task and the Timed Up and Go task) while MI times were measured in different conditions (in congruent/incongruent positions and before/after AE). We showed that MI times were significantly shorter when participants imagined walking in a congruent-standing position compared to an incongruent-sitting position, and when performing MI after actual walking compared to before, in both groups. Shorter MI times in the congruent position and after AE suggest an improvement of MI's temporal accuracy (i.e. the ability to match AE time during MI) in healthy individuals but not in the LLA group.


Assuntos
Imagens, Psicoterapia , Sistema Musculoesquelético/fisiopatologia , Equilíbrio Postural/fisiologia , Caminhada/fisiologia , Adulto , Idoso , Amputação Cirúrgica/psicologia , Feminino , Humanos , Imaginação/fisiologia , Masculino , Pessoa de Meia-Idade , Movimento/fisiologia , Postura/fisiologia , Postura Sentada , Posição Ortostática , Estudos de Tempo e Movimento , Caminhada/psicologia
10.
Brain Cogn ; 151: 105735, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33945939

RESUMO

Whether sensorimotor adaptation can be generalized from one context to others represents a crucial interest in the field of neurological rehabilitation. Nonetheless, the mechanisms underlying transfer to another task remain unclear. Prism Adaptation (PA) is a useful method employed both to study short-term plasticity and for rehabilitation. Neuro-imaging and neuro-stimulation studies show that the cerebellum plays a substantial role in online control, strategic control (rapid error reduction), and realignment (after-effects) in PA. However, the contribution of the cerebellum to transfer is still unknown. The aim of this study was to test whether interfering with the activity of the cerebellum affected transfer of prism after-effects from a pointing to a throwing task. For this purpose, we delivered cathodal cerebellar transcranial Direct Current Stimulation (tDCS) to healthy participants during PA while a control group received cerebellar Sham Stimulation. We assessed longitudinal evolutions of pointing and throwing errors and pointing trajectories orientations during pre-tests, exposure and post-tests. Results revealed that participants who received active cerebellar stimulation showed (1) altered error reduction and pointing trajectories during the first trials of exposure; (2) increased magnitude but reduced robustness of pointing after-effects; and, crucially, (3) slightly altered transfer of after-effects to the throwing task. Therefore, the present study confirmed that cathodal cerebellar tDCS interferes with processes at work during PA and provides evidence for a possible contribution of the cerebellum in after-effects transfer.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Adaptação Fisiológica , Cerebelo , Voluntários Saudáveis , Humanos , Movimento
11.
BMC Surg ; 21(1): 139, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33736639

RESUMO

BACKGROUND: There is a general agreement upon the importance of acquiring laparoscopic skills outside the operation room through simulation-based training. However, high-fidelity simulators are cost-prohibitive and elicit a high cognitive load, while low-fidelity simulators lack effective feedback. This paper describes a low-fidelity simulator bridging the existing gaps with affine velocity as a new assessment variable. Primary validation results are also presented. METHODS: Psycho-motor skills and engineering key features have been considered e.g. haptic feedback and complementary assessment variables. Seventy-seven participants tested the simulator (17 expert surgeons, 12 intermediates, 28 inexperienced interns, and 20 novices). The content validity was tested with a 10-point Likert scale and the discriminative power by comparing the four groups' performance over two sessions. RESULTS: Participants rated the simulator positively, from 7.25 to 7.72 out of 10 (mean, 7.57). Experts and intermediates performed faster with fewer errors (collisions) than inexperienced interns and novices. The affine velocity brought additional differentiations, especially between interns and novices. CONCLUSION: This affordable haptic simulator makes it possible to learn and train laparoscopic techniques. Self-assessment of basic skills was easily performed with slight additional cost compared to low-fidelity simulators. It could be a good trade-off among the products currently used for surgeons' training.


Assuntos
Laparoscopia , Treinamento por Simulação , Cirurgiões , Competência Clínica , Engenharia , Humanos , Laparoscopia/educação , Treinamento por Simulação/métodos , Cirurgiões/educação
12.
BMC Med Educ ; 21(1): 59, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33461539

RESUMO

BACKGROUND: The peripheral venous catheter is the most frequently used medical device in hospital care to administer intravenous treatment or to take blood samples by introducing a catheter into a vein. The aim of this study was to examine the effect of motor imagery associated with actual training on the learning of peripheral venous catheter insertion into a simulated venous system. METHOD: This was a prospective monocentre study in 3rd year medical students. Forty medical students were assigned to the experimental group (n = 20) performing both real practice and motor imagery of peripheral venous catheter insertion or to the control group (n = 20) trained through real practice only. We also recruited a reference group of 20 professional nurses defining the benchmark for a target performance. RESULTS: The experimental group learned the peripheral venous catheter insertion faster than the control group in the beginning of learning phase (p < 0.001), reaching the expected level after 4 sessions (p = .87) whereas the control group needed 5 sessions to reach the same level (p = .88). Both groups were at the same level at the end of the scheduled training. CONCLUSIONS: Therefore, motor imagery improved professional motor skills learning, and limited the time needed to reach the expected level. Motor imagery may strengthen technical medical skill learning.


Assuntos
Aprendizagem , Estudantes de Medicina , Humanos , Destreza Motora , Estudos Prospectivos
13.
Front Hum Neurosci ; 15: 741709, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095444

RESUMO

Motor Imagery (MI) reproduces cognitive operations associated with the actual motor preparation and execution. Postural recordings during MI reflect somatic motor commands targeting peripheral effectors involved in balance control. However, how these relate to the actual motor expertise and may vary along with the MI modality remains debated. In the present experiment, two groups of expert and non-expert gymnasts underwent stabilometric assessments while performing physically and mentally a balance skill. We implemented psychometric measures of MI ability, while stabilometric variables were calculated from the center of pressure (COP) oscillations. Psychometric evaluations revealed greater MI ability in experts, specifically for the visual modality. Experts exhibited reduced surface COP oscillations in the antero-posterior axis compared to non-experts during the balance skill (14.90%, 95% CI 34.48-4.68, p < 0.05). Experts further exhibited reduced length of COP displacement in the antero-posterior axis and as a function of the displacement area during visual and kinesthetic MI compared to the control condition (20.51%, 95% CI 0.99-40.03 and 21.85%, 95% CI 2.33-41.37, respectively, both p < 0.05). Predictive relationships were found between the stabilometric correlates of visual MI and physical practice of the balance skill, as well as between the stabilometric correlates of kinesthetic MI and the training experience in experts. Present results provide original stabilometric insights into the relationships between MI and expertise level. While data support the incomplete inhibition of postural commands during MI, whether postural responses during MI of various modalities mirror the level of motor expertise remains unclear.

14.
Int J Psychophysiol ; 152: 62-71, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32302646

RESUMO

Motor imagery (MI) is the capacity to mentally perform one or a set of movements without concomitant overt action. MI training has been show to enhance the subsequent motor performance. While the benefits of MI to manage stress have been extensively documented, the reverse impact of stress on MI received far less attention. The present study thus aimed to evaluate whether acute stress might influence MI abilities. Thirty participants were assigned either to a stress or a control group. The Socially Evaluated Cold Pressor Test (SECPT) was used to induce stress, with heart rate, electrodermal activity, salivary cortisol, and self-report perceived levels of stress being monitored during the experiment. Stress induction was followed by both implicit (laterality judgment) and explicit (sequential pointing) MI tasks. Main results showed a deleterious impact of stress on implicit MI, while explicit MI was not altered. These exploratory findings provide a deeper understanding of stress effects on cognition, and practically support that under stressful conditions, as during a sport competition or rehabilitation contexts, explicit MI should be prioritized.


Assuntos
Imaginação/fisiologia , Atividade Motora/fisiologia , Prática Psicológica , Desempenho Psicomotor/fisiologia , Estresse Psicológico/fisiopatologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Projetos Piloto , Adulto Jovem
15.
Neuroscience ; 418: 82-95, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31442568

RESUMO

Action observation (AO) alone or combined with motor imagery (AO + MI) has been shown to engage the motor system. While recent findings support the potential relevance of both techniques to enhance muscle function, this issue has received limited scientific scrutiny. In the present study, we implemented a counterbalanced conditions design where 21 participants performed 10 maximal isometric contractions (12-s duration) of elbow flexor muscles against a force platform. During the inter-trial rest periods, participants completed i) AO of the same task performed by an expert athlete, ii) AO + MI, i.e. observation of an expert athlete while concurrently imagining oneself performing the same task, and iii) watching passively a video documentary about basketball shooting (Control). During force trials, we recorded the total force and integrated electromyograms from the biceps brachii and anterior deltoideus. We also measured skin conductance from two finger electrodes as an index of sympathetic nervous system activity. Both AO and AO + MI outperformed the Control condition in terms of total force (2.79-3.68%, p < 0.001). For all conditions, we recorded a positive relationship between the biceps brachii activation and the total force developed during the task. However, only during AO was a positive relationship observed between the activation of the anterior deltoideus and the total force. We interpreted the results with reference to the statements of the psycho-neuromuscular theory of mental practice. Present findings extend current knowledge regarding the priming effects of AO and AO + MI on muscle function, and may contribute to the optimization of training programs in sports and rehabilitation.


Assuntos
Imaginação/fisiologia , Contração Isométrica/fisiologia , Atividade Motora/fisiologia , Músculo Esquelético/fisiologia , Adulto , Braço/fisiologia , Articulação do Cotovelo/fisiologia , Eletromiografia/métodos , Feminino , Humanos , Masculino
16.
Front Hum Neurosci ; 13: 131, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31114489

RESUMO

In the near future, vehicles will gradually gain more autonomous functionalities. Drivers' activity will be less about driving than about monitoring intelligent systems to which driving action will be delegated. Road safety, therefore, remains dependent on the human factor and we should identify the limits beyond which driver's functional state (DFS) may no longer be able to ensure safety. Depending on the level of automation, estimating the DFS may have different targets, e.g., assessing driver's situation awareness in lower levels of automation and his ability to respond to emerging hazard or assessing driver's ability to monitor the vehicle performing operational tasks in higher levels of automation. Unfitted DFS (e.g., drowsiness) may impact the driver ability respond to taking over abilities. This paper reviews the most appropriate psychophysiological indices in naturalistic driving while considering the DFS through exogenous sensors, providing the more efficient trade-off between reliability and intrusiveness. The DFS also originates from kinematic data of the vehicle, thus providing information that indirectly relates to drivers behavior. The whole data should be synchronously processed, providing a diagnosis on the DFS, and bringing it to the attention of the decision maker in real time. Next, making the information available can be permanent or intermittent (or even undelivered), and may also depend on the automation level. Such interface can include recommendations for decision support or simply give neutral instruction. Mapping of relevant psychophysiological and behavioral indicators for DFS will enable practitioners and researchers provide reliable estimates, fitted to the level of automation.

17.
Disabil Rehabil ; 41(8): 926-933, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29275638

RESUMO

PURPOSE: The aim of this study was to measure physical and functional outcomes during the acute postoperative recovery in patients who underwent total knee arthroplasty. Motor imagery has been shown to decrease pain and promote functional recovery after both neurological and peripheral injuries. Yet, whether motor imagery can be included as an adjunct effective method into physical therapy programs following total knee arthroplasty remains a working hypothesis that we aim to test in a pilot study. METHOD: Twenty volunteers were randomly assigned to either a motor imagery or a control group. Pain, range of motion, knee girth as well as quadriceps strength and Timed Up and Go Test time were the dependent variables during pre-test and post-test. RESULTS: The motor imagery group exhibited larger decrease of ipsilateral pain and knee girth, a slightly different evolution of range of motion and an increase of ipsilateral quadriceps strength compared to the control group. No effects of motor imagery on Timed Up and Go Test scores were observed. CONCLUSION: Implementing motor imagery practice into the course of physical therapy enhanced various physical outcomes during acute postoperative recovery after total knee arthroplasty. According to this pilot study, motor imagery might be relevant to promote motor relearning and recovery after total knee arthroplasty.Partial effect-sizes should be conducted in the future. Implications for rehabilitation   Adding motor imagery to physical therapy sessions during the acute period following total knee arthroplasty: • Enhances quadriceps strength. • Alleviates pain. • Enhances range of motion. • Does not have any effect on basic functional mobility. • Does not have any effect on knee girth.


Assuntos
Artroplastia do Joelho/reabilitação , Imagens, Psicoterapia/métodos , Articulação do Joelho , Dor Pós-Operatória , Amplitude de Movimento Articular , Idoso , Feminino , Humanos , Articulação do Joelho/fisiopatologia , Articulação do Joelho/cirurgia , Masculino , Pessoa de Meia-Idade , Medição da Dor/métodos , Dor Pós-Operatória/diagnóstico , Dor Pós-Operatória/psicologia , Dor Pós-Operatória/reabilitação , Modalidades de Fisioterapia , Projetos Piloto , Recuperação de Função Fisiológica , Resultado do Tratamento
18.
Prog Brain Res ; 240: 141-159, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30390828

RESUMO

Motor imagery has been central to adzvances in sport performance and rehabilitation. Neuroscience has provided techniques for measurement which have aided our understanding, conceptualization and theorizing. Challenges remain in the appropriate measurement of motor imagery. Motor imagery continues to provide an impetus for new findings relating to our emotional network, embodied cognition, inhibitory processes and action representation. New directions are proposed which include exploring the physical setting and conditions in which imagery occurs and investigating if short term impairments to the motor system detract from motor imagery ability and the potential application of motor imagery for recovery.


Assuntos
Imaginação/fisiologia , Psicologia do Esporte/tendências , Reabilitação/tendências , Humanos , Psicologia do Esporte/métodos , Reabilitação/métodos
19.
Surg Innov ; 25(6): 625-635, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30222050

RESUMO

Mini-invasive surgery-for example, laparoscopy-has challenged surgeons' skills by extending their usual haptic space and displaying indirect visual feedback through a screen. This may require new mental abilities, including spatial orientation and mental representation. This study aimed to test the effect of cognitive training based on motor imagery (MI) and action observation (AO) on surgical skills. A total of 28 postgraduate residents in surgery took part in our study and were randomly distributed into 1 of the 3 following groups: (1) the basic surgical skill, which is a short 2-day laparoscopic course + MI + AO group; (2) the basic surgical skill group; and (3) the control group. The MI + AO group underwent additional cognitive training, whereas the basic surgical skill group performed neutral activity during the same time. The laparoscopic suturing and knot tying performance as well as spatial ability and mental workload were assessed before and after the training period. We did not observe an effect of cognitive training on the laparoscopic performance. However, the basic surgical skill group significantly improved spatial orientation performance and rated lower mental workload, whereas the 2 others exhibited lower performance in a mental rotation test. Thus, actual and cognitive training pooled together during a short training period elicited too high a strain, thus limiting potential improvements. Because MI and AO already showed positive outcomes on surgical skills, this issue may, thus, be mitigated according to our specific learning conditions. Distributed learning may possibly better divide and share the strain associated with new surgical skills learning.


Assuntos
Terapia Cognitivo-Comportamental/métodos , Internato e Residência/normas , Laparoscopia/educação , Destreza Motora , Técnicas de Sutura/educação , Carga de Trabalho/psicologia , Adulto , Competência Clínica , Cognição , Feminino , Humanos , Laparoscopia/psicologia , Laparoscopia/normas , Masculino , Projetos Piloto , Desempenho Psicomotor , Técnicas de Sutura/normas , Adulto Jovem
20.
Ann Phys Rehabil Med ; 61(5): 300-308, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29944923

RESUMO

BACKGROUND: Motor imagery (MI) training is often used to improve physical practice (PP), and the functional equivalence between imagined and practiced movements is widely considered essential for positive training outcomes. OBJECTIVE: We previously showed that a 5-week MI training program improved tenodesis grasp in individuals with C6-C7 quadriplegia. Here we investigated whether functional equivalence changed during the course of this training program. METHODS: In this descriptive pilot study, we retrospectively analyzed data for 6 individuals with C6-C7 quadriplegia (spinal cord injured [SCI]) and 6 healthy age-matched controls who trained for 5 weeks in visual and kinesthetic motor imagery or visualization of geometric shapes (controls). Before training, we assessed MI ability by using the Kinesthetic and Visual Imagery Questionnaire (KVIQ). We analyzed functional equivalence by vividness measured on a visual analog scale (0-100) and MI/PP time ratios computed from imagined and physically practiced movement durations measured during MI training. These analyses were re-run considering that half of the participants with quadriplegia were good imagers and the other half were poor imagers based on KVIQ scores. To investigate generalization of training effects, we analyzed MI/PP ratios for an untrained pointing task before (3 baseline measures), immediately after, and 2 months after training. RESULTS: During MI training, imagery vividness increased significantly. Only the good imagers evolved toward temporal equivalence during training. Good imagers were also the only participants who showed changes in temporal equivalence on the untrained pointing task. CONCLUSION: This is the first study reporting improvement in functional equivalence during an MI training program that improved tenodesis grasp in individuals with C6-C7 quadriplegia. We recommend that clinical MI programs focus primarily on vividness and suggest that feedback about movement duration could potentially improve temporal equivalence, which could in turn lead to further improvement in PP.


Assuntos
Imaginação , Modalidades de Fisioterapia , Desempenho Psicomotor , Quadriplegia/reabilitação , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Cinestesia , Masculino , Projetos Piloto , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA